

Date: 14-11-2024

Dept. No.

Max. : 100 Marks

Time: 09:00 am-12:00 pm

SECTION A

Answer ANY FOUR of the following

4 x 10 = 40 Marks

1. Prove that $(P \rightarrow (Q \rightarrow R)) \Rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))$ by constructing the truth table.
2. Obtain the CNF and DNF of $P \rightarrow ((P \rightarrow Q) \wedge \neg(\neg Q \vee \neg P))$.
3. Examine whether the premises $\neg P \vee Q, R \rightarrow S, \neg Q \vee R \Rightarrow P \rightarrow S$.
4. Let R be a set of all real numbers with binary operation $\textcircled{+}$ defined by $x * y = x + y + 2xy$ for all $x, y \in R$. Check (i) $\textcircled{+}$ is a monoid or not (ii) Is it commutative?
5. Let $\textcircled{+}$ be a semigroup and R be a congruence relation on $\textcircled{+}$. Then prove that the quotient set S/R is a semigroup $(S/R, \oplus)$ where the operation \oplus corresponds to the operation $\textcircled{+}$ on S . Also show that there exists a homomorphism from $\textcircled{+}$ onto $(S/R, \oplus)$.
6. State and prove Isotonicity property of lattice.
7. In a complemented distributive lattice, show that the following are equivalent:
 $a \leq b \Leftrightarrow a \wedge b' = 0 \Leftrightarrow a' \vee b = 1 \Leftrightarrow b' \leq a'$.
8. Prove that in a complemented distributive lattice, complement is unique.

SECTION B

Answer ANY THREE of the following

3 x 20 = 60 Marks

9. (a) Show that $(\neg P \wedge (\neg Q \wedge R)) \vee ((Q \wedge R) \vee (P \wedge R)) \Rightarrow R$
(b) Verify that the statement formula $(\neg Q \wedge (P \rightarrow Q)) \rightarrow \neg P$ is a tautology or not. (10+10)
10. Obtain PDNF and PCNF for the following:
(i) $(\neg P \rightarrow R) \wedge (Q \geq P)$ (ii) $(P \wedge R) \vee (P \wedge \neg Q)$.
11. (a) Check the following set of premises are inconsistent.
 - (i) If Tharun gets his degree, he will go for a job.
 - (ii) If he goes for a job, he will get married soon.
 - (iii) If he goes for higher study, he will not get married.
 - (iv) Tharun gets his degree and goes for higher study.
(b) Using indirect method of proof, prove that $P \rightarrow R, Q \rightarrow S, P \vee Q \Rightarrow S \vee R$. (10+10)
12. (a) Show that the composition of a semigroup homomorphism is also a semigroup homomorphism.
(b) Prove that for any commutative monoid $\textcircled{+}$, the set of idempotent elements of M forms a sub monoid. (10+10)
13. State and prove the basic properties of lattice. (20)
14. (a) Formulate the product-of-sums canonical forms of the Boolean expression in three variables x_1, x_2, x_3
 - (i) $x_1 * x_2$
 - (ii) $x_1 \oplus x_2$
 - (iii) $(x_1 * x_2)' \oplus x_3$.
(b) State and prove De Morgan's law of Boolean Algebra. (10+10)

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$

